EXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR AN INHOMOGENEOUS REACTION-DIFFUSION EQUATION
S. Chakraborty and J. A. López-Mimbela

Comunicación Técnica No I-07-20/19-12-2007
(PE/CIMAT)

Existence of Global Positive Solutions for an Inhomogeneous Reaction-Diffusion Equation

S. Chakraborty
Department of Mathematics
University of Texas - Pan American
Edinburg TX, USA
J.A. López-Mimbela
Área de Probabilidad y Estadística
Centro de Investigación en Matemáticas
Guanajuato, Mexico

Abstract

We investigate existence of non-negative global solutions to the semilinear equation $\frac{\partial u}{\partial t}=\Delta_{\alpha} u+a(x) \sum_{k=2}^{\infty} p_{k} u^{k}+\left(p_{0}+p_{1} u\right) \phi(x), u(x, 0)=f(x), x \in$ \mathbb{R}^{d}, where $\alpha \in(0,2], \phi, a>0, \phi \in C^{\alpha}\left(\mathbb{R}^{d}\right), a$ and ϕ grow no faster than polynomially, $p>1, p_{0}>0$ and $f \geq 0$.

1 Introduction and main results

In this paper we investigate existence of non-negative global solutions to semilinear equations of the type

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta_{\alpha} u+a(x) \sum_{k=2}^{\infty} p_{k} u^{k}+\left(p_{0}+p_{1} u\right) \phi(x), \quad u(x, 0)=f \quad x \in \mathbb{R}^{d}, \tag{1}
\end{equation*}
$$

where Δ_{α} is the fractional power $-(-\Delta)^{\alpha / 2}$ of the Laplacian, $\alpha \in(0,2], a, \phi$ and f are certain nice functions, and $p_{k}, k=0,1, \ldots$, are non-negative constants such that $\sum_{k} p_{k}=1$, with $p_{0}>0$.

The asymptotic properties of equations of the form (1) are related to the large deviations behavior of super-Brownian motion (in the case $\alpha=2$) and of other
measure-valued processes, see [3] and the references therein. Moreover, the cumulant generating function of the occupation measures of a large family of superprocesses are governed by equations of the form (1), see e.g. [2] and [4]. Pinsky [5] and Zhang [6] studied both existence and non-existence of positive global solutions to the above equation when the sum in the reaction part consists of a single term $a(x) u^{p}$, where p is greater than $1, p_{1}=0$ and p_{0} is a non-negative function of x.

In the present note we investigate existence of global solutions in a different setup, with the assumption that p_{0} does not depend on x. We deal firstly the case in which the sum in (1) consists of a single term of the form $\left(a(x) u^{p}\right.$, with $p>1$. Our result is the contents of the following theorem.

Theorem 1 Consider the semilinear initial value problem

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta_{\alpha} u+a(x) u^{p}+\left(p_{0}+p_{1} u\right) \phi(x) \quad u(x, 0)=f \tag{2}
\end{equation*}
$$

where $0<a, \phi \in C^{r}\left(R^{d}\right)$, a and ϕ grow no faster than polynomially, $p>1, p_{0}, p_{1}>0$ and $f \geq 0$. Assume that

1. $0<a(x) \leq c_{1}(1+|x|)^{m}$ for $c_{1}>0$,
2. $0<\phi(x) \leq c_{2}(1+|x|)^{-q}$ for $c_{2}>0, q \in(\alpha, d]$,
3. $p>1+(\alpha+m)^{+} /(q-\alpha)$.

Then for all sufficiently small $p_{0}, p_{1}>0$ and all sufficiently small $f \geq 0$, the mild solution to Eq. (2) exists globally in time. More specifically, for sufficiently small p_{0}, $p_{1}>0$ and each $\epsilon>0$, there exists a constant $c>0$ such that, if

$$
0 \leq f(x) \leq c(1+|x|)^{-(\alpha+m)^{+} /(p-1)-\epsilon}
$$

then the mild solution to (2) exists for all time.
Our second theorem addresses existence of positive solutions to Equation (1).
Theorem 2 Consider the equation

$$
\begin{equation*}
\partial u / \partial t=\Delta_{\alpha} u+a(x) \sum_{k=2}^{\infty} p_{k} u^{k}+\left(p_{0}+p_{1} u\right) \phi(x) \quad u(x, 0)=f \quad x \in \mathbb{R}^{d}, \tag{3}
\end{equation*}
$$

where $0<a, \phi \in C^{r}\left(R^{d}\right)$, a and ϕ grow no faster than polynomially, $1>p_{0}, p_{1}>0$, $\sum_{k=2}^{\infty} p_{k}=1-p_{0}-p_{1}$ and $f \geq 0$. Assume that

1. $0<a(x) \leq c_{1}(1+|x|)^{m}$ for $c_{1}>0$,
2. $0<\phi(x) \leq c_{2}(1+|x|)^{-q}$ for $c_{2}>0, q \in(\alpha, d]$,
3. $q-\alpha>(\alpha+m)^{+}$.

Then for sufficiently small $p_{0}, p_{1}>0$ and sufficiently small $f \geq 0$, the solution to the equation (3) is global. More specifically, for sufficiently small $p_{0}, p_{1}>0$, and each $\epsilon>0$, there exists a constant $c>0$ such that if $0 \leq f(x) \leq c(1+|x|)^{-(\alpha+m)^{+}-\epsilon}$, then the solution to (3) is global in time.

2 Proofs

Our method of proof is an adaptation of a technique used in [3]. We use the following lemma (which is proved in the final section of the present paper).

Lemma 3 There exists a $C_{*}>0$ and for all $\delta>0, a C_{\delta}>0$ such that,

$$
\begin{equation*}
C_{*}(1+|x|)^{\alpha-q} \leq \int_{R^{d}} \frac{(1+|y|)^{-q}}{|x-y|^{d-\alpha}} d y \leq C_{\delta}(1+|x|)^{\alpha-q+\delta}, \quad q \in(\alpha, d] \tag{4}
\end{equation*}
$$

We define

$$
\begin{equation*}
v(x, t) \equiv v(x)=\mu \int_{R^{d}} \frac{(1+|y|)^{-q}}{|x-y|^{d-\alpha}} d y, \quad \mu>0 \tag{5}
\end{equation*}
$$

2.1 Proof of Theorem 1

Our assumptions imply that

$$
a(x) \leq c_{1}(1+|x|)^{m}, \quad \phi(x) \leq c_{2}(1+|x|)^{-q}
$$

for some positive constants $c_{1}, c_{2}>0$. Noticing [1] that the Green's function G of the generator $-\Delta_{\alpha}$ satisfies, $G(x, y)=\gamma_{\alpha, d} /|x-y|^{d-\alpha}$ for an appropriate constant $\gamma_{\alpha, d}>0$, it follows from the right-hand inequality in (4), and $p>1+(\alpha+m)^{+} /(q-\alpha)$, that there exists a $\delta>0$ such that

$$
\begin{equation*}
\Delta_{\alpha} v-v_{t}+a(x) v^{p}+\left(p_{0}+p_{1} v\right) \phi(x) \leq\left(\frac{-\mu}{\gamma_{\alpha, d}}+c_{1} C_{\delta}^{p} \mu^{p}+\left(p_{0+} p_{1} C_{\delta} \mu\right) c_{2}\right)(1+|x|)^{-q} \tag{6}
\end{equation*}
$$

It is easy to show that

$$
\Delta_{\alpha} v \leq-\mu / \gamma_{\alpha, d}(1+|x|)^{-q} \quad \text { and } \quad p_{0} \phi(x) \leq p_{0} c_{2}(1+|x|)^{-q}
$$

Moreover,

$$
a(x) v^{p} \leq c_{1} C_{\delta}^{p} \mu^{p}(1+|x|)^{p(\alpha-q+\delta)+m} \leq c_{1} C_{\partial}^{p} \mu^{p}(1+|x|)^{-q}
$$

because

$$
\begin{align*}
p(\alpha-q+\delta)+m & =p(\alpha-q)+p \delta+m \\
& \leq\left(1+(\alpha+m)^{+} /(q-\alpha)\right)(\alpha-q)+p \delta+m \\
& \leq\left(1+(\alpha+m)^{+} /(q-\alpha)+\delta^{\prime}\right)(\alpha-q)+p \delta+m \tag{7}
\end{align*}
$$

for some $\delta^{\prime} \geq 0$. This is possible because p is strictly greater than $1+(\alpha+m)^{+} /(q-\alpha)$.
We consider two cases.
Case 1: $(\alpha+m)^{+}=0$ and $\alpha+m<0$. In this case we choose $\delta^{\prime}=0$ and the right hand side in the last inequality becomes $(\alpha-q)+p \delta+m$. Now we can choose δ so small as to make $\alpha+p \delta+m$ negative and, so, $(\alpha-q)+p \delta+m \leq-q$.

Case 2: $(\alpha+m)^{+} \geq 0$ and $\alpha+m \geq 0$. The RHS in (7) becomes

$$
\begin{aligned}
\alpha-q-(\alpha+m)^{+}+\delta^{\prime}(\alpha-q) & +p \delta+m \\
= & \alpha-q-(\alpha+m)+\delta^{\prime}(\alpha-q)+p \delta+m \\
= & -q+\delta^{\prime}(\alpha-q)+p \delta
\end{aligned}
$$

Now we can choose δ so small that $\delta^{\prime}(\alpha-q)+p \delta$ is negative. Then the whole thing is less than or equal to $-q$. Thus, Case 2 is also done. In addition,

$$
p_{1} v \phi(x) \leq p_{1} c_{2} C_{\partial} \mu(1+|x|)^{\alpha-q+\partial-q} \leq p_{1} c_{2} C_{\partial} \mu(1+|x|)^{-q}
$$

this being so because $\alpha-q+\partial$ is negative. In this way (6) is justified.
Now, by first choosing μ sufficiently small so that $C_{\delta}^{p} \mu^{p} \leq 1 / 2 \cdot \mu / \gamma_{\alpha, d}$, and then choosing $p_{0}, p_{1}>0$ sufficiently small, the RHS of (6) can be made negative. Using the maximum principle together with the first inequality in (4), it follows that for all sufficiently small $c, p_{0}, p_{1}>0$, the solution $u(x, t)$ to (1) with $f(x) \leq c(1+|x|)^{\alpha-q}$ satisfies $u(x, t) \leq v(x)$, and is thus a global solution.

Our next goal is to increase the exponent $\alpha-q$ appearing in the bound for f, up to the exponent $-(\alpha+m)^{+} /(p-1)-\epsilon$ figuring in the statement of the theorem.

We argue as follows. By assumption $p>1+(\alpha+m)^{+} /(q-\alpha)$. This implies

$$
p-1>(\alpha+m)^{+} /(q-\alpha),
$$

which in turn yields

$$
\alpha-q<-(\alpha+m)^{+} /(p-1) .
$$

We can now choose $q \equiv q_{0}$ so that the last inequality becomes an equality. Let $q_{1} \epsilon\left(q_{0}, q\right)$. Then q_{1} satisfies the above inequality, and from the above results it follows that, if

$$
\phi(x) \leq c_{2}(1+|x|)^{-q_{1}}
$$

for some $c_{1}>0$, then for sufficiently small $c, p_{0}, p_{1}>0$, the solution to (1) with $f(x) \leq c(1+|x|)^{\alpha-q_{1}}$ is global. But then, by the maximum principle, the same holds true if we decrease ϕ so that it satisfies the bound in the statement of the theorem, namely $\phi(x) \leq c_{2}(1+|x|)^{-q}$.

Subsuming, we have proved that (1) possesses a global solution provided that $c, p_{0}, p_{1}>0$ are sufficiently small, and $f(x) \leq c(1+|x|)^{\alpha-q_{1}}$ for all $q_{1} \in\left(q_{0}, q\right)$. Since q_{1} can be chosen arbitrarily close to q_{0}, it follows that a global solution exists if

$$
f(x) \leq c(1+|x|)^{-(\alpha+m)^{+} /(p-1)-\epsilon}
$$

for some $\epsilon>0$ and $c>0$ sufficiently small. This completes the proof of global existence.

Notice that, when $a(x) \equiv 1$, the first condition for global solution disappears and the exponent in the bound of f we obtain α instead of $(\alpha+m)^{+}$. Also, it can easily be seen that when $p_{1}=0$ we can apply just the same proof.

2.2 Proof of Theorem 2

Our approach here is an adaptation of the technique used in the proof of Theorem 1. We use again Inequality (4). Let v be given by (5). There exists $\delta>0$ such that

$$
\begin{align*}
& \Delta_{\alpha} v-v_{t}+a(x) \sum_{k=2}^{\infty} p_{k} v^{k}+\left(p_{0}+p_{1} v\right) \phi(x) \\
& \quad \leq\left(\frac{-\mu}{\gamma_{\alpha, d}}+c_{1} \sum_{k=2}^{\infty} p_{k} C_{\delta}^{k} \mu^{k}+\left(p_{0}+p_{1} v\right) c_{2}\right)(1+|x|)^{-q} \tag{8}
\end{align*}
$$

Indeed, as before, $\Delta_{\alpha} v \leq-\mu / \gamma_{\alpha, d}(1+|x|)^{-q}$ and $p_{0} \phi(x) \leq p_{0} c_{2}(1+|x|)^{-q}$. Moreover,

$$
a(x) \sum_{k=2}^{\infty} p_{k} v^{k} \leq c_{1} \sum_{k=2}^{\infty} p_{k} C_{\delta}^{k} \mu^{k}(1+|x|)^{m+k(\alpha-q+\delta)}
$$

for all $\delta>0$. Since the inequality

$$
m+k(\alpha-q+\delta) \leq m+2(\alpha-q+\delta)
$$

is valid for all k, it suffices to show that $m+2(\alpha-q+\delta) \leq-q$. Again two cases arise: If $\alpha+m<0$, then we choose $\delta>0$ so small that $m+\alpha+\delta<0$, and thus, $m+2(\alpha-q+\delta) \leq-q$. In case of $\alpha+m \geq 0$, since $q-\alpha>(\alpha+m)^{+}=\alpha+m$, we can choose $\delta>0$ so small that $m+\alpha+(\alpha-q)+\delta$ is negative. Hence, $m+2(\alpha-q+\delta) \leq-q$. In addition, because of $\alpha-q+\delta<0$,

$$
p_{1} v \phi(x) \leq p_{1} c_{2} C_{\delta} \mu(1+|x|)^{\alpha-q+\delta-q} \leq p_{1} c_{2} C_{\delta} \mu(1+|x|)^{-q} .
$$

Thus (8) is satisfied. Now, by first choosing μ so small so $C_{\delta}^{p} \mu^{p} \leq 1 / 2 \cdot \mu / \gamma_{\alpha, d}$ and then choosing $p_{0}, p_{1}>0$ sufficiently small, the RHS of (8) can be made negative. Hence, using the maximum principle together with the first inequality in (4), it follows that for sufficiently small $c, p_{0}, p_{1}>0$ the solution $u(x, t)$ to (3) with $f(x) \leq c(1+|x|)^{\alpha-q}$ satisfies $u(x, t) \leq v(x)$, and is thus a global solution.

In order to increase the exponent $\alpha-q$ appearing in the bound for f to the exponent $-(\alpha+m)^{+}-\epsilon$ appearing in the statement of the theorem, we argue as follows.

By assumption $q-\alpha>(\alpha+m)^{+}$and so $\alpha-q<(\alpha+m)^{+}$. Let q_{0} be such that the above inequality becomes an equality if we replace q by q_{0}. Let $q_{1} \in\left(q_{0}, q\right)$.

Then q_{1} satisfies the above inequality. So, by the above results, it follows that if $\phi(x) \leq c_{2}(1+|x|)^{-q_{1}}$ for some $c_{1}>0$, then for sufficiently small $p_{0}, p_{1}>0$ and sufficiently small $c>0$, the solution to (3) with $f(x) \leq c(1+|x|)^{\alpha-q_{1}}$ is global. But then, by the maximum principle, the same conclusion holds true if we decrease ϕ so that it satisfies the original bound, that is, $\phi(x) \leq c_{2}(1+|x|)^{-q}$. In this way we have proved that (3) possesses a global solution provided that $p_{0}, p_{1}>0$ and $c>0$ are sufficiently small, and $f(x) \leq c(1+|x|)^{\alpha-q_{1}}$ for all $q_{1} \in\left(q_{0}, q\right)$. Since q_{1} can be chosen arbitrarily close to q_{0}, it follows that the solution to (3) is global if $f(x) \leq c(1+|x|)^{-(\alpha+m)^{+}-\epsilon}$ for some $\epsilon>0$ and $c>0$ small.

When $a(x) \equiv 1$, the first condition for existence of global solution disappears, and in the bound of f, we get α instead of $(\alpha+m)^{+}$. Finally, it is easy to see that the same argument also works when $p_{1}=0$.

3 Remaining proofs

In this section we prove the following statement:
There exists a $c_{1}>0$ and, for all $\delta>0$, a $C_{\delta}>0$ such that

$$
c_{1}(1+|x|)^{\alpha-q} \leq \int_{R^{d}}(1+|y|)^{-q} /|x-y|^{d-\alpha} d y \leq C_{\delta}(1+|x|)^{\alpha-q+\delta}, \quad q \in(\alpha, d] .
$$

In order to prove the second inequality we need the following lemma.
Lemma 4 The integral

$$
\begin{equation*}
\int_{R^{d}} \frac{(1+|x|)^{q-\alpha-\partial}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y \tag{9}
\end{equation*}
$$

is a bounded function of x for any $\delta \in(0, q-\alpha)$.
Proof. Let $x \in \mathbb{R}^{d}$ be fixed. We split (9) into three integrals over the Borel sets

$$
\begin{aligned}
& D_{1}=\left\{y \in R^{d}:|x-y|<|x| / 2\right\} \\
& D_{2}=\left\{y \in R^{d}:|x-y|>|x| / 2,|x-y|<|y| / 2\right\} \\
& D_{3}=\left\{y \in R^{d}:|x-y|>|x| / 2,|x-y|>|y| / 2\right\}
\end{aligned}
$$

and proceed in two steps as follows.

Step 1: For the integral over D_{1} we have,

$$
\begin{equation*}
\int_{D_{1}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y \leq \text { Const. }(1+|x|)^{-\alpha-\delta} \int_{D_{1}}|x-y|^{d-\alpha} d y \tag{10}
\end{equation*}
$$

This is so because $|x-y|<|x| / 2$ and $|x|-|y|<|x| / 2$ imply $|y|>|x| / 2$, and therefore

$$
(1+|x|)^{q} /(1+|y|)^{q} \leq(1+|x|)^{q} /\left(1+\frac{|x|}{2}\right)^{q} \leq \text { Const. }
$$

At this stage we pass to polar co-ordinates

$$
\left(y_{1}-x_{1}, y_{2}-x_{2}, \ldots, y_{d}-x_{d}\right) \longrightarrow\left(r \cos \theta_{1}, r \sin \theta_{1} \cos \theta_{2}, \ldots, r \sin \theta_{1} \sin \theta_{2} \ldots \sin \theta_{d}\right),
$$

the Jacobian of the transformation being equal to $r^{d-1} \sin ^{d-2} \theta_{1} \cdots \sin \theta_{d-2}$. After the change of variables the RHS of (10) becomes

$$
\begin{aligned}
\text { Const. }(1+|x|)^{-\alpha-\delta} \int_{0}^{|x| / 2} & \int_{\theta_{1}} \cdots \int_{\theta_{d-1}} r \sin ^{d-2} \theta_{1} \cdots \sin \theta_{d-2} d \theta_{d-2} \cdots d \theta_{1} d r \\
& \leq \text { Const. }(1+|x|)^{-\alpha-\delta} \cdot \int_{0}^{|x| / 2} r d r \\
& \leq \text { Const. }(1+|x|)^{-\alpha-\delta} \cdot|x|^{2} \\
& \leq \text { Const. }
\end{aligned}
$$

which shows that the integral over D_{1} is bounded in x.
Step 2: In order to bound from above the integral over D_{2}, we first assume that $|x|<1$. In this case $(1+|x|)^{q-\alpha-\delta} \leq$ Const., and

$$
\begin{aligned}
\int_{D_{2}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y & \leq \text { Const. } \int_{D_{2}} \frac{d y}{|x-y|^{d-\alpha}(1+|y|)^{q}} \\
& \leq \text { Const. } \int_{D_{2}} \frac{d y}{|x-y|^{d-\alpha}} \\
& \leq \text { Const. } \int_{\{y:|x| / 2<|x-y|<|x|\}} \frac{d y}{|x-y|^{d-\alpha}}
\end{aligned}
$$

because $|x-y|<|y| / 2$ and $|y|-|x|<|y| / 2$, and therefore $|x|>|y| / 2$, which implies $|x-y|<|y| / 2<|x|$ and thus $|x| / 2<|x-y|<|x|$. Passing to polar coordinates
renders

$$
\begin{aligned}
\int_{D_{2}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y & \leq \text { Const. } \int_{|x| / 2}^{|x|} \int_{\theta_{1}} \ldots \int_{\theta_{d}} r \sin ^{d-2} \theta_{1} \ldots \sin \theta_{d-2} d \theta_{d-2} \ldots d \theta_{1} d r \\
& \leq \text { Const. } \int_{|x| / 2}^{|x|} r d r \\
& \leq \text { Const. }
\end{aligned}
$$

Hence, the integral over D_{2} is bounded in x if $|x| \leq 1$.
Assume now that $|x| \geq 1$. Then we have

$$
\begin{equation*}
\int_{D_{2}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y \leq \text { Const. } \int_{D_{2}} \frac{(1+|x|)^{-\alpha-\delta}}{|x-y|^{d-\alpha}} d y \tag{11}
\end{equation*}
$$

This is so because $|x-y|<|y| / 2$ together with the triangle inequality imply $|y|>$ $2 / 3|x|$, hence $\left.(1+|x|)^{q} /(1+|y|)^{q}\right) \leq$ Const. Notice also that $|x-y|<|x| / 2$ implies

$$
|x-y|+1 / 2<1 / 2+|x| / 2=(1+|x|) / 2
$$

which in turn gives $1 /(1+|x|)<$ Const. $(1 /|x-y|)$. We can now bound from above the RHS of (11) by

$$
\text { Const. } \int_{D_{2}} 1 /|x-y|^{d-\alpha+\alpha+\delta} d y=\text { Const. } \int_{D_{2}} 1 /|x-y|^{d+\delta} d y
$$

Using polar coordinates as before, we see that the LHS of (11) is bounded from above by

$$
\text { Const. } \int_{\{y:|x| / 2<|x-y|<|x|\}} r d r=\frac{1}{\delta|x|^{\delta}} \text {. }
$$

This shows that the integral over D_{2} is bounded in x also in the case $|x| \geq 1$. We conclude that the integral over D_{2} is bounded in x.

In order to bound the last integral we split D_{3} into two parts D_{31} and D_{32}, where

$$
\begin{aligned}
D_{31} & =\{y:|x-y|>|x| / 2,|x-y|>|y| / 2,|x-y| \leq 1\}, \\
D_{32} & =\{y:|x-y|>|x| / 2,|x-y|>|y| / 2,|x-y|>1\} .
\end{aligned}
$$

We have $|x| \leq 2$ on D_{31} as $|x-y|>|x| / 2$ and $|x-y| \leq 1$ imply $|x| / 2 \leq 1$. Therefore,

$$
\begin{aligned}
\int_{D_{31}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y & \leq \text { Const. } \int_{D_{31}} \frac{d y}{|x-y|^{d-\alpha}(1+|y|)^{q}} \\
& \leq \text { Const. } \int_{D_{31}}|x-y|^{\alpha-d} d y \\
& \leq \text { Const. } \int_{\{y:|x| / 2 \leq|x-y| \leq 1\}}|x-y|^{\alpha-d} d y \\
& \leq \text { Const. } \int_{|x| / 2}^{1} r d r \\
& \leq \text { Const. }
\end{aligned}
$$

where we passed to polar coordinates after the third inequality, and used that $0 \leq$ $|x| \leq 2$ to obtain the last inequality.

For the integral over D_{32} we have

$$
\int_{D_{32}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y \leq \int_{D_{32}} \frac{|x-y|^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^{q}} d y
$$

This is because $|x-y|>|x| / 2$ and $|x-y|>1$ on D_{32}, and so $(1+|x|) / 2 \leq$ Const. $|x-y|$. Since $|x-y|>|y| / 2$ and $|x-y|>1$ yield both $|x-y|>\{1+|y|\} / 2$ and $1+|y|<$ Const. $|x-y|$, the above inequality becomes

$$
\begin{aligned}
& \leq \text { Const. } \int_{D_{32}} 1 /\left\{|x-y|^{d-q+\delta}(1+|y|)^{q}\right\} d y \\
& \leq \text { Const. } \int_{D_{32}} 1 /\left\{(1+|y|)^{d-q+\delta}(1+|y|)^{q}\right\} d y \\
& \leq \text { Const. } \int_{D_{32}} 1 /(1+|y|)^{d+\delta} d y
\end{aligned}
$$

which, after passing to polar coordinates renders

$$
\begin{aligned}
& \leq \text { Const. } \int_{R^{d}} 1 /(1+|y|)^{d+\delta} d y \\
& \leq \text { Const. } \int_{0}^{\infty} r^{d-1} /(1+r)^{d+\delta} d r \\
& \leq \text { Const. } \int_{0}^{\infty} r^{d-1} /(1+r)^{d+\delta} d r \\
& \leq \text { Const. } \int_{0}^{\infty} 1 /(1+r)^{1+\delta} d r \\
& \leq \text { Const. } \int_{1}^{\infty} 1 / s^{1+\delta} d s=\left[-1 / \delta s^{\delta}\right]_{1}^{\infty} \\
& =1 / \delta
\end{aligned}
$$

Thus, the integral over D_{3} is also bounded in x. Lemma (4) is proved.

3.1 Proof of Lemma 3

The RHS inequality in (4) follows directly from Lemma (4).
We now prove the remaining inequality in (4). Notice that

$$
\begin{equation*}
\int_{R^{d}}(1+|y|)^{-q} /|x-y|^{d-\alpha} d y \geq \text { Const. }(1+|x|)^{-q} \int_{D_{1}}|x-y|^{\alpha-d} d y . \tag{12}
\end{equation*}
$$

This is because $|x-y|<|x| / 2$ on D_{1}, which implies $|y|<3|x| / 2$. Hence,

$$
(1+|x|)^{q} /(1+|y|)^{q} \geq(1+|x|)^{q} /(1+3|x| / 2)^{q} \geq \text { Const. }
$$

yielding $(1+|y|)^{-q} \geq$ Const. $(1+|x|)^{-q}$. We use once again polar coordinates to show
that the LHS of (12) equals

$$
\begin{aligned}
& \text { Const. }(1+|x|)^{-q} \int_{\{y: 0<|x-y|<|x| / 2\}}|x-y|^{\alpha-d} d y \\
& \quad=\text { Const. }(1+|x|)^{-q} \int_{0}^{|x| / 2} \int_{\theta_{1}} \ldots \int_{\theta_{d-1}} r^{d-1} / r^{d-2} \sin ^{d-2} \theta_{1} \ldots \sin \theta_{d-2} d \theta_{d-2} \ldots d \theta_{1} d r \\
& =\text { Const. }(1+|x|)^{-q} \int_{0}^{|x| / 2} r \cdot f(\pi, d) d r \\
& =\text { Const. }(1+|x|)^{-q} \int_{0}^{|x| / 2} r d r \\
& =(1+|x|)^{-q} \cdot|x|^{2}
\end{aligned}
$$

Subsuming, we have proved that

$$
\int_{R^{d}}(1+|y|)^{-q} /|x-y|^{d-\alpha} d y \geq \text { Const. }(1+|x|)^{-q} \cdot|x|^{2} .
$$

From here, the left-hand inequality in (4) follows easily if $|x| \geq 1$. In the case $|x|<1$ one has to verify that $\int_{R^{d}}(1+|y|)^{-q} /|x-y|^{d-\alpha} d y$ is bounded away from zero. To prove this, notice that, as $|x|<1$,

$$
\begin{aligned}
\int_{R^{d}}(1+|y|)^{-q} /|x-y|^{d-\alpha} d y & \geq \int_{R^{d}}(1+|y|)^{-q} /(|x|+|y|)^{d-\alpha} d y \\
& \geq \int_{R^{d}}(1+|y|)^{-q} /(1+|y|)^{d-\alpha} d y \\
& =\int_{R^{d}}\left(1 /(1+|y|)^{d-\alpha+q} d y\right.
\end{aligned}
$$

which is a non-zero constant, and hence is no smaller than $C_{*}(1+|x|)^{-q}$ for a suitable constant $C_{*}>0$. This proves Lemma 3.

References

[1] Bogdan, K. and Byczkowski, T. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133 (1999), no. 1, 53-92.
[2] Iscoe, I. A weighted occupation time for a class of measure-valued branching processes. Probab. Theory Relat. Fields 71 (1986), no. 1, 85-116.
[3] Lee T.Y., Some limit theorems for super-Brownian motion and semilinear differential equations, Annals of Probab. 21 (1993), 979-995.
[4] Lee T.Y., Asymptotic Results for Super-Brownian Motions and Semilinear Differential Equations. The Annals of Probability 29, No. 3, pp. 1047-1060.
[5] Pinsky, Ross G. Finite time blow-up for the inhomogeneous equation $u_{t}=\Delta u+$ $a(x) u^{p}+\lambda \phi$ in R^{d}. Proc. Amer. Math. Soc. 127 (1999), no. 11, 3319-3327.
[6] Zhang, Qi S. A new critical phenomenon for semilinear parabolic problems. J. Math. Anal. Appl. 219 (1998), no. 1, 125-139.

